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1. Introduction 

The Pre-bored Grouted Planted Nodular 

(PGPN) piles represent a groundbreaking 

innovation in pile foundation engineering. The 

use of PGPN is growing more popular in 

construction projects across Asia due to its 

practical advantages in ecofriendliness and 

efficiency, which have made it a preferred choice 

in many construction projects (Zhou et al., 2020, 

Nguyen et al., 2022). Its unique composition and 

load-bearing mechanisms have spurred 

researchers to develop methods for precisely 

estimating its ultimate axial bearing capacity 

while also addressing the challenge of minimizing 

environmental impact. This section revisits the 

evolution of bored PGPN piles, highlights the 

complexities inherent in their load-bearing 

mechanisms, reviews existing estimation 

methods, and underscores the quest for enhanced 

precision through innovative approaches like 

genetic algorithms. 

The development of bored PGPN piles began 

in the 1990s, driven by continuous refinements 

aimed at optimizing load transfer mechanisms 

(Horiguchi & Karkee, 1995; Karkee et al., 1998). 

Japanese researchers pioneered the pre-bored 

precast piling method, introducing high-strength 

nodular concrete inserted into pre-excavated 

holes filled with cement milk. Subsequent 

innovations, such as the hyper-MEGA method, 

further enhanced axial load-bearing capacity by 

enlarging base excavations, making these piles 

highly effective in various Asian countries 

(Kobayashi & Ogura, 2007). 

The distinctive composition of PGPN piles 

involves intricate interactions between the core 

Pre-tensioned spun High strength Concrete (PHC) 

pile, cemented-soil layer, and natural soils. With 

this unique composition, it would create novel 

load-bearing mechanisms (Yu et al., 2021; Huynh 

et al., 2022). Despite efforts to elucidate these 

mechanisms through analytical, experimental, 

and hybrid numerical methods, the complexities 

of cemented-soil interactions remain a challenge 

for conventional estimation techniques. Unlike 

traditional piles, the load transfer in PGPN piles is 

influenced by the cemented-soil layer, which 

could alter the interaction between the pile and 

surrounding soil, posing a significant challenge for 

the accurate prediction of load-bearing capacity. 

Several methods have been proposed to 

estimate the axial load-bearing capacity of PGPN 

piles, each with its own advantages and 

limitations. Analytical approaches, such as those 

by Wang et al. (2019), used comprehensive 

equations derived from soil parameters. 

Experimental techniques, exemplified by Fang et 

al. (2014) and Zhou et al. (2020), involved 

physical testing to capture pile behavior but may 

not fully encapsulate the complexities of PGPN 

piles. Empirical formulas, derived from field data, 

offered simplicity but may lack applicability 

across diverse regions due to variations in soil 

behavior (Homma, 2014; Horiguchi & Karkee, 

1995; Karkee et al., 1998; Kobayashi & Ogura, 

2007; Yoshimi & Tokimatsu, 1983). 

To address these challenges, this study 

explores the potential of genetic algorithms (GAs) 

to refine empirical formulas and improve 

accuracy. The decision to use GAs is driven by 

their ability to optimize complex, multi-objective 

problems, making them particularly suited for 

tackling the intricacies of predicting load-bearing 

capacities in PGPN piles. GAs, inspired by the 

principles of evolutionary theory, have been 

adapted to tackle complex engineering problems 

by optimizing multiple objectives simultaneously. 

Originating from the work of Holland and his 

research team in the 1960s and 1970s, GAs mimic 

the process of natural selection by representing 

potential solutions as chromosomes composed of 

discrete genes, each controlling specific aspects of 

the solution. Initially, these genes were 

conceptualized as binary digits, but subsequent 

developments introduced more diverse gene 

types (Lambora et al. 2019). 

It is well known that engineering dilemmas 

are often met with multiple conflicting objectives, 

such as minimizing costs, maximizing 

performance, and enhancing reliability. These 

objectives pose formidable challenges, closely 

mirroring the complexities encountered in real-

world scenarios. GA, as a widely embraced meta-

heuristic, is adeptly suited to grapple with such 

multi-objective predicaments. It is adeptly 

modified to handle multiple objectives through 

the incorporation of specialized fitness functions 

and strategies geared towards preserving 
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solution diversity. The choice of GAs for this study 

is rooted in their success in balancing these 

objectives, especially in scenarios involving 

complex interactions, such as those found in 

PGPN piles (Huynh et al. 2022). Genetic 

algorithms are particularly well-suited to handle 

such multi-objective predicaments due to their 

ability to preserve solution diversity and 

adaptively search the solution space. This study 

employs genetic algorithm to optimize the 

coefficients of the empirical formula, significantly 

improving the prediction accuracy of axial load-

bearing capacity for PGPN piles. 

Building upon a dataset from Vietnam, Huynh 

et al. (2022) developed a direct Standard 

Penetration Test (SPT) method, where the 

subsurface condition is represented using in-situ 

SPT data. While this method is user-friendly and 

practical, its accuracy was somewhat limited, 

achieving a correlation coefficient of 0.846. 

Subsequently, Nguyen et al. (2022) leveraged the 

capabilities of artificial neural networks (ANN) to 

develop a closed-form solution with a 

significantly improved correlation coefficient of 

0.98. Despite its accuracy, the ANN-based 

method's complexity made it challenging for 

practical use. Additionally, the dataset in this 

study was limited both quantitatively and 

qualitatively, with a scarcity of samples tested 

until failure. 

Despite existing methodologies, accurately 

estimating axial load-bearing capacity for PGPN 

piles remains an open challenge. Accurate 

estimation of the axial load-bearing capacity of 

PGPN piles is vital for the safe and economical 

design of foundation systems in geotechnical 

engineering. The empirical formulas derived 

through genetic algorithm optimization provide a 

practical and efficient solution, incorporating the 

complexities of cemented-soil interactions. By 

enhancing the dataset with more comprehensive 

static pile load test data and employing advanced 

genetic algorithm techniques, this study aims to 

deliver a significantly improved predictive tool for 

practitioners in the field. Furthermore, the study 

seeks to expand the scope of this methodology, 

demonstrating its potential application across 

different regions and soil types beyond Vietnam. 

 In summary, this study builds upon previous 

work to develop a more accurate and practical 

method for estimating the axial load-bearing 

capacity of PGPN piles. By enriching the dataset 

and leveraging the power of genetic algorithms, 

the new empirical formulas offer a significant 

advancement over existing methods. This 

expanded scope enhances its relevance to 

geotechnical engineers globally, contributing to 

more efficient and reliable foundation design 

practices. 

2. Static pile load test and dataset enrichment 

The PGPN piles are composed of two main 

parts: the core PHC pile and a cemented soil layer. 

The core PHC pile combines nodular and 

cylindrical segments, as shown in Figure 1. It has 

a Young's modulus of about 40,000 MPa. The 

cemented soil layer, made of pure cement grout, 

has strengths of 10 MPa for the shaft and 20 MPa 

for the toe, yielding a minimum compressive 

strength of around 0.5 MPa. This data, provided 

by Phan Vu Investment Corporation, outlines the 

material properties used. 

The dataset in this study builds upon the 

foundation established in the work of Huynh et al. 

(2022). Specifically, to maintain consistency with Huynh’s study, the pile characteristic, material 

properties, and the procedure for determining the 

ultimate axial load-bearing capacity are based on 

the Chin-Kondner hyperbolic law (Chin, 1970). 

These aspects, having been comprehensively de-

scribed in Huynh et al. (2022), will not be 

reiterated here. Instead, this study focuses on the 

significant enhancements made to the dataset to 

improve the accuracy and robustness of the 

empirical formulas. 

To fortify the foundation of our study, we 

embarked on an extensive data enrichment 

process. Initially sourced from diverse case 

histories in Vietnam, our dataset was amplified to 

encapsulate a broader range of scenarios and 

geotechnical conditions. Specifically, the number 

of samples increased from 81 case histories in the 

study by Huynh et al. (2022) to a more robust 

dataset comprising 98 case histories (see Figure 

2). Moreover, the number of case histories where 

piles were tested to the failure stage was 

significantly augmented, increasing from a limited 

number to 15 cases. 

In this study, eight input variables were 

utilized to predict the pile head displacement of 
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PGPN piles. These variables include the diameter 

of the nodular segment (Don), the diameter of the 

cylindrical segment (Dc), the total pile length (L), 

the length of the nodular segment (Ln), the 

enlargement ratio (ω), the SPT index at the pile tip 

(SPTtip), the average SPT index along the nodular 

segment (SPTnod), and the average SPT index 

along the cylindrical segment (SPTcyl). The 

statistical properties of the dataset are given in 

Table 1.  

Important note: All the case histories used in 

this study involve friction piles, where shaft 

resistance is the predominant load-bearing 

mechanism. This focus ensures consistency 

across the dataset by concentrating on piles with 

similar geotechnical behavior, minimizing 

variations that could arise from different types of 

piles or load transfer mechanisms. This 

consistency is crucial in maintaining the reliability 

of the data used to develop and validate the 

proposed formula.

Figure 1 (a) Pile characteristics, (b) pile head, (c) pile tip (Nguyen et al., 2022; Huynh et al., 2022). 
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Figure 2. Load-displacement curves of all 98 case histories. 
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Variables Unit Min Mean 
Standard 

Deviation 
Skewness Max 

Don mm 350 600 101.58 0.131 800 

Dc mm 350 600 94.11 0.245 800 

L m 22 40.50 8.00 -0.220 55 

Ln m 0 12 4.22 -1.230 12 

 - 1 1.18 0.08 -1.354 1.23 

SPTtip - 11.75 29.38 10.71 0.235 50 

SPTnod - 0 19.67 13.74 0.353 50 

SPTcyl - 2.45 13.05 8.13 1.714 40 

 

Table 1 provides a comprehensive overview 

of the pile dimensions and soil conditions at the 

test sites. The pile diameters (Don and Dc) have a 

mean of 600 mm (about 1.97 ft) with moderate 

variability of standard deviations of 101.58 mm 

(about 4 in) and 94.11 mm, respectively, and 

near-zero skewness values. This symmetry 

suggests a balanced dataset representative of 

typical pile sizes in geotechnical engineering. The 

pile lengths (L) range from 22 m to 55 m with a 

mean of 40.50 m, showing a slight skew towards 

shorter piles, while the nodular segment lengths 

(Ln) exhibit a higher negative skewness, indicating 

mostly shorter segments. The enlarged 

excavation ratio ( as shown in Figure 1) shows 

low variability and a narrow range, reflecting high 

consistency across the dataset. 

The soil properties, represented by SPT 

values, further highlight the dataset's diversity. 

SPTtip values range from 11.75÷50, with a mean of 

29.38 and a low skewness, indicating symmetrical 

tip resistance distribution. SPTnod values, ranging 

from 0 to 50 with a mean of 19.67, show greater 

variability within the nodular segment. The SPTcyl 

values, with a high skewness and a mean of 13.05, 

indicate lower resistance values in the cylindrical 

segment. These diverse soil conditions captured 

in the dataset are critical for validating the 

proposed formula's effectiveness.  

In comparison to the previous work of Huynh 

et al. (2022), the 17 new cases expand the dataset’s diversity by introducing a wider range of 
pile diameters, lengths, embedded lengths, and 

more extreme SPT values. This increased 

variability enhances the model’s ability to 
generalize across different pile configurations and 

soil conditions, ultimately improving predictive 

accuracy. Omitting or replacing these cases with 

less diverse ones would reduce the dataset’s variability, potentially decreasing the model’s 

robustness. The inclusion of these cases plays a 

critical role in strengthening the model's 

predictive capacity. The comprehensive and 

diverse nature of the dataset ensures that the 

proposed formula for predicting the ultimate 

bearing capacity of PGPN piles is both robust and 

reliable, as evidenced by high reliability scores 

across different measurement methods, 

effectively accounting for the complexity and 

variability of geotechnical conditions. 

Figure 2 shows the load-displacement curves 

of all 98 case histories. The value of the ultimate 

bearing capacity is determined by identifying the 

intersection of the Davisson offset line and the 

Chin extrapolated load-displacement curve.  Chin’s method, based on Kondner’s (1963) 
work, assumes a hyperbolic load-displacement 

curve near failure. Test data from the final loading 

cycle is replotted, with settlement on the x-axis 

and settlement-to-load ratio on the y-axis. A 

straight line is drawn from the last three points in 

the plastic phase to reduce errors from early 

elastic displacement, and the ultimate bearing 

capacity is calculated using Equation (1). 

(1) 

Where: i - corresponds to the last 3 load steps; 

n - the number of load levels, where n = 3, Si - the 

settlement at the ith load step; Pi - the magnitude of 

the ith load step. 

The load-displacement curve has been extended according to Chin’s method, as outlined 
in Equation (2). 

 
(2) 

Where a and b are defined as follows: 
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Table 1. Statistical properties of the dataset. 
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 (2b) 

Davisson’s method calculates the pile head’s 
displacement (Equation 3). The ultimate bearing capacity is found where Davisson’s offset line 
intersects the extrapolated Chin curve. 

(3) 

Where: S - the pile head deflection (mm); A - 

the cross-sectional area of the pile shaft; E - the Young’s modulus of the pile material; L - the pile 

length; Q - the maximum applied load; D - the pile 

diameter or width (mm). 

Similarly, ultimate bearing capacities defined 

by the total limited displacement criteria under 

Vietnamese standard TCVN 10304-2014 for a 

displacement of 40 mm and FHWA guidelines 

(Abu-Farsakh et al., 2010) for a displacement of 10%D are calculated by the intersection of Chin’s 
extrapolated curve and horizontal lines at S = 40 

mm and S = 10%D, respectively (Huynh et al., 

2022). Considering that the pile diameters are 

either 600 mm or 800 mm, the 40 mm 

displacement corresponds to 5÷7% of the pile 

diameter. 

The distribution characteristics of ultimate 

bearing capacity using the Chin method, 

Chin/Davisson method, Chin/10%D method, and 

Chin/40 mm method are illustrated in Figures 

3÷7 respectively. It is evident that the ultimate 

bearing capacity obtained from the Chin method 

is the highest, followed by the Chin/Davisson and 

Chin/10%D methods, which are very comparable 

to each other. 

The value from the Chin/40 mm method is 

the lowest among the methods. Crucially, the 

discrepancy in ultimate bearing capacity values 

derived from these four methods is less than 30% 

(see Figures 8 and 9). The minimal difference 

between the Chin/40 mm and Chin/10%D 

methods, where the Chin/10%D values are 

slightly higher, further validates the reliability of 

these approaches. This negligible variance 

highlights that the ultimate bearing capacity 

determined using the proposed approach, which 

integrates the Chin-Kondner extrapolation 

method with the total limited displacement 

criteria under Vietnamese standard TCVN 10304-

2014, is both dependable and accurate. This 

consistency underscores the robustness of the 

methodologies employed. 

3. Problem formulation 

3.1. Problem statement 

3 3

1 1

1 n n

i
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Figure 3. Chin’s extrapolation method illustrating failure at various displacement levels 
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Figure 4. Distribution characteristics of ultimate 
bearing capacity of piles using the Chin method. 

Figure 5. Distribution characteristics of ultimate 
bearing capacity of piles using the Chin/Davisson 

method. 

Figure 6. Distribution characteristics of ultimate 
bearing capacity of piles using the Chin/10%D 

method. 

Figure 7. Distribution characteristics of ultimate 
bearing capacity of piles using the Chin/40 mm 

method. 

Figure 8. Comparison of measured load values from 
the Chin/Davisson method and Chin/10%D. 

Figure 9. Comparison of measured load values from 
Chin/40 mm and Chin/10%D. 
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The total load capacity of the pile (Qu) is equal 

to the sum of tip resistance (Qp) and shaft 

resistance (Qs), shaft resistance is divided into 2 

components including the segment of PHC 

cylindrical pile (Qsc) and the nodular segment 

(Qsn). 𝑄𝑢 = 𝑄𝑝 + 𝑄𝑠 = 𝑄𝑝 + (𝑄𝑠𝑐 + 𝑄𝑠𝑛) (4) 

Noting that the piles in the data set being 

surveyed are constructed through many layers of 

soil (such as sand, clay, clayey sand, sandy clay, 

and silt), the division of such a wide variety of soils 

is computational tedious nor is practical due to 

the limited number of survey piles. In general, the 

characteristics of survey soil fill are divided into 

two types, including sand and clay. So, the 

calculation formula is divided into six 

components as follows: 

1 2 3 4 5 6uQ Q Q Q Q Q Q     
 (5) 

Where: Q1 - the tip resistance in sandy layers; 

Q2 - the tip resistance in clayey layers; Q3 - shaft 

resistance along the cylindrical segment in sandy 

layers; Q4 - shaft resistance along the cylindrical 

segment in clayey layers; Q5 - shaft resistance 

along the nodular segment in sandy layers; Q6 - 
shaft resistance along the nodular segment in 

clayey layers; 

Note that when Q1 has a non-zero value, Q2 

has a zero value and vice versa. Based on the tip 

resistance formula of the Hyper-MEGA JPC 

method 𝑄𝑝 = 𝛼�̅�𝐴𝑝, (where  - coefficient, �̅� - 

the average SPT index of the soil beneath the pile 

tip, and Ap - the area of the pile’s cross-section 

(details can be found in Homma 2014)). The tip 

resistance has a value equal to the product of a 

coefficient, the average SPT index of the soil under 

the tip of the pile and the cross section of the tip of 

the pile. Proceeding to transform the formula has 

the same meaning as follows: 𝑄1 = 𝑋1ѡ𝐴𝑝𝑁1  (6) 𝑄2 = 𝑋2ѡ𝐴𝑝𝑁2 (7) 

Where: X1 and X2 - variables to be optimal;  

- the enlargement ratio,  = De/Ds (De - the 

enlarged excavation diameter; Ds = Don + 0.05(m), 

Don is the diameter of PGPN pile); Ap - the area of 

pile tip; N1 - the average Nspt of the sandy layers 

underneath the pile tip defined as: 

N1 = (Nu+3NL)/4 ≤ 20 (8) 

N2 - the average Nspt of the clayey layers 

underneath the pile tip defined as: 

N2 = (Nu+3NL)/4 ≤ 20 (9) 

Where Nu - the average SPT index of the soil 

on the tip of the pile an interval of 2 m; NL - the 

average SPT index of the soil under the tip of the 

pile an interval [Don+De]. 

Similar to the tip load capacity, the shaft load 

capacity has a value equal to the product of a 

coefficient, circumference, calculated pile 

segment length and average SPT index are 

presented as follows: 

Q3 = X3ψL3N3 (10) 

Q4 = X4ψL4N4 (11) 

Q5 = X5ψL5N5 (12) 

Q6 = X6ψL6N6 (13) 

Where: X3, X4, X5 and X6 - variables to be optimal; Ψ - the circumference of the calculated 

segment pile; L3 - the length of the cylindrical 

segment pile in the sandy layers; L4 - the length of 

the cylindrical segment pile in the clayey layers; L5 

- the length of the nodular segment pile in the 

sandy layers; L6 - the length of the nodular 

segment pile in the clayey layers; N3 - the average 

SPT index of the cylindrical segment pile in the 

sandy layers, N3 ≤ 25; N4 - the average SPT index 

of the cylindrical segment pile in the clayey layers, 

N4 ≤ 15; N5 - the average SPT index of the nodular 

segment pile in the sandy layers, N5 ≤ 50; N6 - the 

average SPT index of the nodular segment pile in 

the sandy clayey, N6 ≤ 20. 

The formula is summarized as follows: 𝑄𝑢 = 𝑋1𝑌1 + 𝑋2𝑌2+𝑋3𝑌3 + 𝑋4𝑌4+ 𝑋5𝑌5 + 𝑋6𝑌6 
(14) 

In which X1, X2, X3, X4, X5 and X6 are variables 

to optimize and have values fluctuating in a range 

as follows: 

150 ≤ X1 ≤ 250; 150 ≤ X2 ≤ 250; 5 ≤ X3 ≤ 15; 5 ≤ X4 ≤ 
15; 5 ≤ X5 ≤ 15; 5 ≤ X6 ≤ 15 

And Y1, Y2, Y3, Y4, Y5 and Y6 - a constant defined 

as follows:
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 tip

1 p 1 sand
Y A N 

 
(15) 

 2 2

tip

p clay
Y A N 

 
(16) 

 3 3 3

cylindrical

sand
Y L N 

 
(17) 

 4 4 4

cylindrical

clay
Y L N 

 
(18) 

 5 5 5

nodular

sand
Y L N 

 
(19) 

 6 6 6

nodular

clay
Y L N 

 
(20) 

Details of these constants are presented in 

Appendix A1. 

3.2. Genetic algorithm approach for empirical 

formula development 

In the pursuit of refining our empirical 

formula and achieving a heightened correlation 

coefficient, we turned to the power of a genetic 

algorithm a computational approach inspired by 

the mechanics of natural selection and genetics. 

This algorithmic framework enabled us to 

iteratively optimize the coefficients of our 

empirical formula, enhancing its accuracy and 

predictive capabilities. 

In the context of genetic algorithms, the goal 

is to find the optimal solution to a problem by 

mimicking the process of natural evolution. This 

is achieved through a population of candidate 

solutions, which undergo processes akin to 

biological evolution, such as selection, crossover 

(recombination), and mutation. 

Reproduction in genetic algorithms involves 

selecting chromosomes for the next generation 

based on their fitness. Various selection 

procedures exist, including proportional 

selection, ranking, and tournament selection, each 

employing different strategies for determining 

the probability of a chromosome's survival. 

The genetic algorithm operates through a 

series of steps, mirroring the principles of 

evolution. The process can be summarized as 

follows: 

3.2.1. Initialization 

A population of potential solutions, known as 

"individuals," is generated. In our case, each 

individual corresponds to a unique set of 

coefficients for the empirical formula. 

Formula: Let P={x1, x2,..., xn}, represent the 

initial population, where xi denotes an individual 

with a unique set of coefficients w=(w1, w2,..., wm)  

3.2.2. Evaluation 

Each individual is evaluated based on a 

predefined fitness function. The fitness function 

quantifies how well the empirical formula with a 

particular set of coefficients aligns with the 

empirical measurements of axial load-bearing 

capacity. In our context, the fitness function 

captures the correlation between predicted and 

measured load-bearing capacities. 

Fitness Function Formula: 

𝑓(𝑥1) = 𝑅2 = 1 − ∑ (𝑦𝑗 − 𝑦�̂�)2𝑁𝑗=1∑ (𝑦𝑗 − 𝑦�̅�)2𝑁𝑗=1  (21) 

where: yj - the observed values; 𝑦�̂� - the 

predicted values from the empirical formula; �̅� - 

the mean of the observed values; N - the number 

of data points. 

3.2.3. Selection 

Individuals with higher fitness values those 

that yield better correlations are more likely to be 

selected for the next generation. This mimics the 

concept of natural selection, favoring individuals 

with superior traits. 𝑃(𝑥𝑖) = 𝑓(𝑥𝑖)∑ 𝑓(𝑥𝑗)𝑁𝑗=1  (22) 

where: P(xi) - the probability of selecting 

individual xi ; f(xi) - is the fitness value of xi. 

3.2.4. Crossover and Mutation 

Selected individuals undergo genetic 

operations, such as crossover and mutation, to 

create a new generation of solutions. Crossover 

involves combining traits from two parent 

individuals to create one or more offspring in-

dividuals. Mutation introduces small random 

changes in an individual's traits. 

Crossover involves combining traits from 

two parent individuals to create one or more 

offspring individuals. This can be represented as:
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Offspring1=𝛼.Parent1+(1-𝛼).Parent2 (23) 

Offspring2=(1-𝛼).Parent1+𝛼.Parent2 (24) 

where: α - a random crossover coefficient bet-

ween 0 and 1. 

Mutation introduces small random changes 

in an individual's traits. If xi is a gene in an 

individual's chromosome, mutation can be 

represented: 

Xi = Xi + ∆x  (24a) 

where: ∆x - a small random perturbation. 

Replacement: 

The new generation replaces the previous 

generation, forming the basis for subsequent 

iterations. One common strategy is to replace the 

entire population with the new generation. 

Another strategy is elitism, where a certain 

number of the best individuals are carried over to 

the next generation to ensure the best solutions 

are retained. 

Termination: 

The algorithm iterates through multiple 

generations, continually improving the 

correlation coefficient of the empirical formula. 

Termination occurs when a predefined stopping 

criterion is met, such as a maximum number of 

iterations or a desired level of correlation. 

The genetic algorithm's iterative nature 

refines the coefficients of the empirical formula 

over successive generations, converging towards 

an optimal solution coefficients that yield the 

highest correlation coefficient. This process 

harnesses the principles of natural selection and 

genetic variation to fine-tune the formula's 

accuracy and enhance its predictive capabilities. 

Overall Process: 

1. Initialization: Generate the initial 

population. 

2. Evaluation: Calculate fitness for each in-

dividual. 

3. Selection: Select individuals based on 

fitness. 

4. Crossover and Mutation: Create new 

individuals. 

5. Replacement: Form new generation. 

6. Termination: Check if. 

In summary, the genetic algorithm serves as 

a computational engine, dynamically optimizing 

the empirical formula's coefficients to achieve a 

higher correlation with empirical measurements 

of axial load-bearing capacity. This approach 

melds the power of mathematics and compu-

tation to elevate the precision of our method and 

its applicability to PGPN piles. 

3.3. Mathematical representation of the new 

SPT direct method (Huynh et al. 2022) 

To obtain the optimized variables, a genetic 

algorithm was applied to the dataset in Appendix 

A1, which includes constant values for Y1÷Y6 and 

the target value Qu for each pile, following the 40 

mm method. The algorithm optimized variables 

X1÷X6 to improve correlation coefficients and 

performance metrics for the new SPT direct 

method. 

As above-mentioned, the variables X1÷X6 

were constrained as follows: 

X1, X2: 150÷250 

X3÷X6: 5÷15 

These constraints ensure practical and 

reliable results. Full data and constraints are 

provided in Appendix A1. 

Table 2 presents the improved correlation 

coefficients and performance metrics achieved by 

the new SPT direct method. 

 

Table 2. Results summary for variables X1 to X6 
extracted via Genetic Algorithms. 

Variables X1 X2 X3 X4 X5 X6 

Value 210 240 5.4 7.8 6.6 8.8 

 

By substituting the values of variables X1 

through X6 into Equation (14), we derive the 

formula for estimating the ultimate bearing 

capacity of the nodular pile as follows: 

Qu=210Y1+240Y2+5.4Y3+7.8Y4+ 

6.6Y5+8.8Y6 
(25) 

The empirical formula is ultimately 

expressed in Equation (22) as follows: 

Qu = 210 (𝜔𝐴𝑝𝑁1)𝑠𝑎𝑛𝑑𝑡𝑖𝑝 + 

240 (𝜔𝐴𝑝𝑁2)𝑐𝑙𝑎𝑦𝑡𝑖𝑝 + 

5.4 (𝜓𝐿3𝑁3)𝑠𝑎𝑛𝑑𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙+ 

(26) 
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7.8 (𝜓𝐿4𝑁4)𝑐𝑙𝑎𝑦𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙+ 

6.6 (𝜓𝐿5𝑁5)𝑠𝑎𝑛𝑑𝑛𝑜 𝑑𝑢𝑙𝑎𝑟+ 

8.8 (𝜓𝐿6𝑁6)𝑠𝑎𝑛𝑑𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙
 

The strength of the proposed empirical 

formula given in Equation (22) lies in its 

simplicity, making it highly suitable for hand 

calculations. This ease of use ensures that 

practitioners can quickly and efficiently estimate 

the axial load-bearing capacity of PGPN piles 

without the need for complex computational 

tools. The streamlined nature of the formula 

minimizes the potential for errors during manual 

calculations and facilitates its adoption in field 

conditions where rapid decision-making is 

crucial. By providing a straightforward yet robust 

method for assessing pile capacity, the proposed 

formula enhances practical application in 

geotechnical engineering, streamlining the design 

process and improving overall efficiency. The 

reliability of this formula will be comprehensively 

assessed in the next section, further validating its 

utility and accuracy. 

4. Performance assessment 

Figure 10 shows a comparison between the 

proposed method and the measured value using 

the Chin/40 mm method. The scatter plot clearly 

demonstrates the superior performance of the 

proposed method in estimating the ultimate 

bearing capacity of PGPN piles. The correlation 

coefficient of 0.912 highlights the remarkable 

accuracy of the proposed method, even in cases 

where SPT data or soil conditions deviate from 

typical values. This high level of precision 

indicates that the proposed method can reliably 

predict the ultimate bearing capacity, closely 

matching the measured values. This accuracy is 

critical in ensuring safe and effective pile 

foundation design, particularly in non-typical 

geotechnical conditions. The robustness of the 

proposed method is demonstrated by its 

performance across a wide range of scenarios and 

geotechnical conditions included in the enriched 

dataset. This ensures that the method is versatile 

and adaptable, capable of providing accurate 

predictions under varying conditions, which is 

crucial for practical engineering applications. 

The comparison of the reliability of the 

proposed formula for calculating the ultimate 

axial load capacity against various established 

methods is summarized in Table 3. The reliability 

metrics span a range of methodologies, including 

Meyerhof (1976), Shioi & Fukui (1982), TCXD 

205:1998, TCVN 10304:2014, Karkee et al. 

(1998), Horiguchi & Karkee (1995), JPC Basic 

(Homma 2014), JPC Hyper-Mega (Homma 2014), 

and the newly proposed formula. These methods 

were evaluated using ultimate bearing capacities 

determined through the Chin/40 mm, 

Chin/10%D, and Chin/Davisson approaches. 

 

 

 

 
Measured 

ultimate 

bearing 

capacity 

Correlation coefficient (R) 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

Chin/ 

40mm 
0.533 0.541 0.551 0.722 0.856 0.872 0.810 0.835 0.912 

Chin/ 

10%D 
0.518 0.521 0.536 0.698 0.847 0.860 0.795 0.820 0.903 

Chin/ 

Davisson 
0.515 0.521 0.536 0.675 0.815 0.820 0.743 0.764 0.871 

[1] Meyerhof; [2] Shioi & Fukui; [3] TCXD 205:1998; [4] TCVN 

10304:2014; [5] Karkee; [6] Horiguchi & Karkee; [7] JPC Basic; 

[8] JPC Hyper-Mega; [9] Proposed formula. Details shown in 

Appendix A2 

 

The comparison of the reliability of the 

proposed formula for calculating the ultimate 

axial load capacity against various established 

methods is summarized in Table 3. The reliability 

metrics span a range of methodologies, including 

Figure 10. Comparison between the proposed 
method and the measured value using the Chin/40 

mm method. 

Table 3. Correlation coefficients comparing the 
reliability of the proposed formula with other 

methods. 
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Meyerhof (1976), Shioi & Fukui (1982), TCXD 

205:1998, TCVN 10304:2014, Karkee et al. 

(1998), Horiguchi & Karkee (1995), JPC Basic 

(Homma 2014), JPC Hyper-Mega (Homma 2014), 

and the newly proposed formula. These methods 

were evaluated using ultimate bearing capacities 

determined through the Chin/40 mm, 

Chin/10%D, and Chin/Davisson approaches. 

The proposed formula consistently exhibits 

the highest reliability across all measurement 

methods (Chin/40 mm: 0.912, Chin/10%D: 0.903, 

Chin/Davisson: 0.871). This indicates superior 

performance in accurately predicting the ultimate 

axial load capacity of PGPN piles, reflecting the 

benefits of the enriched dataset and the advanced 

genetic algorithm approach. On the other hand, 

traditional methods such as Meyerhof, Shioi & 

Fukui, and TCXD 205:1998 show lower reliability 

scores across the board. This suggests that these 

methods may not capture the complex 

interactions in geotechnical conditions as 

effectively as the proposed approach. 

4.1. Comparison of various measurement 

methods 

The Chin/40 mm method shows slightly 

higher reliability values compared to Chin/10%D 

and Chin/Davisson, indicating it may be a more 

conservative measure for ultimate bearing 

capacity. The proposed formula significantly 

outperforms others here with a reliability of 

0.912, highlighting its robustness. For 

Chin/10%D, reliability scores are marginally 

lower than Chin/40 mm but still showcase the 

proposed formula's high accuracy (0.903). The 

close values between Chin/40 mm and Chin/10%D suggest the proposed formula’s 
adaptability and precision across different 

evaluation standards. Although the 

Chin/Davisson method generally yields the 

lowest reliability values, the proposed formula 

still leads with a reliability of 0.871, further 

underscoring its reliability and effectiveness, even 

under more stringent or varying conditions. 

4.2. Robustness compared to JPC basic and 

JPC hyper-mega 

The JPC Basic method, designed for PGPN 

piles, shows reliability scores of 0.810 (Chin/40 

mm), 0.795 (Chin/10%D), and 0.743 

(Chin/Davisson). These values are significantly 

lower than those of the proposed formula, 

indicating that the proposed method offers a 

more reliable and accurate prediction of the 

ultimate bearing capacity. This improvement can 

be attributed to the comprehensive dataset and 

the sophisticated genetic algorithm used. The JPC 

Hyper-Mega method, another advanced approach 

for PGPN piles, shows reliability scores of 0.835 

(Chin/40 mm), 0.820 (Chin/10%D), and 0.764 

(Chin/Davisson). While JPC Hyper-Mega 

outperforms JPC Basic, it still falls short of the proposed formula’s reliability. The proposed formula’s higher scores demonstrate its enhanced 
precision and robustness, likely due to the 

enriched dataset and optimization techniques 

employed. The substantial improvement over 

traditional methods, including the well-regarded 

JPC Basic and JPC Hyper-Mega, can be attributed 

to the enriched dataset, which captures a broader 

range of geotechnical scenarios. The use of a 

genetic algorithm refines empirical relationships 

with greater precision and allows for better adap-

tability across varying geotechnical conditions. 

4.3. Discussion on the percentage of tip 

resistance obtained from the proposed 

formula 

The histogram in Figure 11 illustrates the 

distribution of tip load capacity percentages 

obtained from the proposed formula, with a 

median value of 18.48%. This value is in line with 

the expected range for friction piles and reflects 

the typical contribution of tip resistance to the 

overall load-bearing capacity. In friction piles, the 

majority of the load is carried by skin friction 

along the shaft, rather than by end-bearing or tip 

resistance. The design of friction piles generally 

emphasizes the interaction between the pile 

surface and surrounding soil, which is well-

represented by this moderate percentage of tip 

resistance. 

The dataset used in this study encompasses 

various geotechnical conditions in Vietnam, 

where soils typically consist of soft to medium 

clays and loose to medium sands. These soils tend 

to promote significant shaft friction, which 

naturally results in a smaller contribution of tip 

resistance. The observed median of 18.48% aligns 

with this understanding. Furthermore, this value
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is comparable to findings in geotechnical 

literature, which often report tip resistance 

ranging from 10÷30% of the total bearing 

capacity for friction piles in similar soil conditions. 

Thus, the median value supports the validity of 

the proposed formula. 

From a distribution perspective, the 

histogram in Figure 11 shows a concentration of 

tip resistance percentages around the median, 

with a relatively symmetrical spread. This 

suggests that the proposed formula consistently 

estimates tip resistance across various case 

histories in the dataset. Appendix A3 further 

corroborates this by displaying the predicted tip 

resistance percentages for all case histories. The 

data show that the formula produces tip 

resistance values within a consistent range across 

different piles, and the absence of extreme values 

in both figures strengthens confidence in the formula’s reliability. For practitioners, 
understanding the typical contribution of tip 

resistance is essential for designing efficient and 

safe pile foundations. The median value of 18.48% 

highlights that while tip resistance is a factor, it is 

not the dominant one-reaffirming the design 

principle that most of the load is carried by shaft 

friction. This insight aids in optimizing pile 

designs, ensuring that piles are neither 

overdesigned nor underdesigned. 

In conclusion, the 18.48% median value for 

tip resistance obtained from the proposed 

formula is both reasonable and aligned with the 

expected behavior of friction piles, given the 

geotechnical conditions. This value not only 

corroborates findings from existing geotechnical 

literature but also reflects the typical load 

distribution for friction piles. The distribution 

shown in the histogram underscores the 

consistency and robustness of the proposed 

method in estimating ultimate bearing capacity, 

making it a valuable tool for geotechnical 

engineers. 

The developed formula predicts that the 

minimal percentage of tip resistance, based on an 

analysis of 98 case histories, is around 13%. This 

minimal tip resistance typically occurs in short 

piles embedded in high bearing capacity soil 

layers, as exemplified by case history TP-2 of 

Project 4 (see Figure 12). In scenarios where piles 

are embedded in soils with moderate to good 

bearing capacities, characterized by SPT-N values 

ranging from 10÷20, the tip resistance is 

minimally mobilized. This is observed in case 

histories such as TP8-4 of Project 5 ( Figure 13) 

and KT01 of Project 11 ( Figure 14). 

Conversely, the formula indicates that the 

maximal tip resistance is approximately 30%. 

This high level of tip resistance mobilization is 

observed in piles embedded in very soft soils, 

where the SPT-N value is less than 3, and the soft 

soil layer constitutes more than half of the entire 

embedment length. These conditions lead to a 

significant reliance on tip resistance for load-

bearing capacity. Such scenarios are exemplified 

by the UTP1 pile of Project 7 (see Figure 15), the 

KT01 pile of Project 10 (see Figure 16), and the 

TP1 pile of Project 26 (see Figure 17). 

Figure 11. Distribution characteristics of pile tip 
load-bearing capacity. 
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Figure 12. Characteristics of borehole 1 and 
characteristics of TP-2 pile of project 4. 
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Figure 13. Characteristics of borehole HKB and 
characteristics of pile TP8-4 project 5. 
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Figure 14. Characteristics of borehole HK3 and 
characteristics of KT01 pile of project 11. 

Figure 15. Characteristics of borehole BH1 and 
characteristics of UTP1 pile of project 7. 

Figure 16. Characteristics of borehole HK2 and 
characteristics of KT01 pile of project 10. 

Figure 17. Characteristics of borehole HK1 and 
characteristics of TP1 pile of project 26. 
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The formula's ability to predict these 

variations in tip resistance, from minimal in 

strong soils to maximal in very soft soils, 

highlights its robustness and adaptability to 

different geotechnical environments. 

The range of tip resistance percentages high-

lights the reliability and accuracy of the proposed 

formula. It effectively captures the interaction 

between subsurface conditions and the pile's 

shaft and tip resistance, reflecting the varying soil 

conditions encountered in the case histories. This 

variability demonstrates the formula's robustness 

in different geotechnical contexts, thereby 

supporting its practical applicability in predicting 

pile performance. 

4.4. Discussion on the filed data of Zhou et al. 

(2021) 

To further validate the reliability and robbus-

ness of the proposed formula, we applied it to field 

data from recent studies. Notably, Zhou et al. 

(2021) provided valuable data from pile load tests 

on two instrumented piles, TP1 and TP2. This data 

serves as an excellent benchmark for assessing 

the accuracy of the proposed formula. Both piles, 

TP1 and TP2, exhibit similar physical cha-

racteristics, including dimensions and materials, 

as depicted in Figure 18. The soil profile for these 

piles consists of layers of clay and sand with 

varying densities and strengths. Standard 

Penetration Test (SPT) values indicate medium to 

dense sand and stiff clay layers, which are typical 

for friction piles where shaft friction is the 

primary mechanism of load resistance. The 

results of the static load tests, shown in Figure 19, 

highlight notable differences in performance 

despite the similarities in pile and soil cha-

racteristics. These differences become par-

ticularly pronounced when the displacement 

exceeds 40 mm, suggesting variations in load 

transfer and soil-pile interaction under higher 

load conditions. Specifically, the measured 

ultimate load capacities for TP1 and TP2 are 

6204.9 kN and 6829.9 kN, respectively. However, 

when considering the pile head displacement of 

40 mm, the measured ultimate load-bearing 

capacities of both piles are comparable, at 

approximately 5569 kN. 

4.5. Application of proposed formula 

The proposed formula's predicted ultimate 

load capacity, calculated as 6535 kN (see below), 

closely matches the measured value for pile TP2 

(6829.9 kN) from Zhou et al. (2021), confirming 

its reliability and effectiveness.The total load 

capacity calculated as 6535 kN is shown below. 

Tip load capacity: 

Qp=210Y1+240Y2=210x6.85+0=1438.5 kN 

Shaft load capacity: 

Qs= 5.4Y3 + 7.8Y4 + 6.6Y5 + 8.8Y6 = (5.4x0) + 
(7.8x115) + (6.6x336.94) + (8.8x224.52)  

= 5096.5 kNFigure 18. Characteristics of borehole HK1 and 
characteristics of TP1 pile of Zhou et al. 

(2021)’s study. 

Figure 19. Results of static load tests on testing 
piles TP1 and TP2. 
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Here, Y1, Y2, Y3, Y4, Y5, Y6 are derived from 

Table 4. 

 

 

 

Y1 Y2 Y3 Y4 Y5 Y6 

6.85 0 0 115 336.94 224.52 

 

Total load capacity: 

Qu=Qp+Qs=1438.5+5096.5=6535 kN 

The proposed formula's predicted ultimate 

load capacity (6535 kN) closely matches the 

measured value for pile TP2 (6829.9 kN) from 

Zhou et al. (2021), confirming its reliability and 

effectiveness. Although there is a slight 

discrepancy in the predicted capacity for TP1, this 

is expected given the observed differences in test 

results for displacements over 40 mm. The 

formula's accurate prediction for TP2, despite 

significant differences in similar test conditions, 

demonstrates its precision, flexibility, and adap-

tability across various geotechnical environments 

and pile designs. 

To sum up, the strong correlation with Zhou 

et al. (2021) field data validates the proposed 

method, suggesting it could become a new 

standard in geotechnical engineering. The 

formula's ability to accurately predict ultimate 

load capacities ensures safer and more efficient 

pile foundation designs. By utilizing enriched 

datasets and advanced genetic algorithms, the 

proposed method significantly improves upon 

traditional approaches, offering valuable insights 

for both practitioners and researchers. 

5. Conclusion 

This study presented a robust and reliable 

formula for predicting the ultimate bearing 

capacity of PGPN piles. The proposed formula, 

validated using an enriched dataset and advanced 

genetic algorithms, consistently exhibited higher 

reliability across various measurement methods. 

It has been successfully demonstrated with 

significant improvement over traditional 

methods. This enhanced performance indicated 

its superior capability in accurately predicting pile 

load capacities, thereby contributing to safer and 

more efficient pile foundation design. 

Quantitatively, the proposed formula 

achieved impressive reliability scores across 

different measurement methods. For the Chin/40 

mm method, it achieved a reliability score of 

0.912, significantly higher than JPC Basic's 0.810 

and JPC Hyper-Mega's 0.835. Similarly, for the 

Chin/10%D method, the proposed formula 

showed a reliability of 0.903, surpassing JPC 

Basic's 0.795 and JPC Hyper-Mega's 0.820. Even 

for the more stringent Chin/Davisson method, the 

proposed formula's reliability score of 0.871 

outperformed JPC Basic's 0.743 and JPC Hyper-

Mega's 0.764. These results highlight the 

robustness and consistency of the proposed 

method. 

The reliability of the proposed formula was 

further confirmed through validation with field 

data from Zhou et al. (2021). In this case study, 

two instrumented piles (TP1 and TP2) were 

tested, with measured ultimate load capacities of 

6204.9 kN and 6829.9 kN, respectively. The 

proposed formula accurately predicted the 

ultimate load capacity, especially for TP2, where 

the predicted value was consistent with the 

measured value. This agreement between the 

proposed method and field data underscores its 

flexibility and applicability to different locations 

and geotechnical conditions, demonstrating its 

practical utility and reliability. 

The analysis of the percentage of tip re-

sistance obtained using the proposed formula 

shows a median of 18.48%, which is reasonable 

for friction piles within the dataset. This median 

value aligns well with expected values for similar 

geotechnical conditions, further validating the proposed method’s accuracy. The consistency of 
these results suggests that the proposed formula 

effectively captures the essential characteristics 

of pile-soil interaction, making it a reliable tool for 

predicting the ultimate bearing capacity. 

In conclusion, the proposed formula, leve-

raging enriched datasets and advanced genetic 

algorithms, offers a significantly enhanced and 

reliable prediction method for the ultimate 

bearing capacity of PGPN piles. Its superior 

performance, validated by both quantitative 

evaluation and field data, positions it as a valuable 

tool for practitioners and researchers in 

geotechnical engineering. The proposed formula's 

ability to effectively address the complexities of 

Table 4. Y1÷Y6 values of Zhou (2021) project 
calculated according to the proposed formula. 
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geotechnical conditions ensures more accurate 

and dependable predictions of ultimate bearing 

capacity, thereby contributing to safer and more 

efficient pile foundation design. 

6. Limitations and Future Work 

One limitation of this study is the lack of 

cross-validation to thoroughly assess the 

robustness of the genetic algorithm (GA) across 

different subsets of data. While we mitigated the 

risk of overfitting by using a diverse dataset and 

incorporating early stopping and fitness diversity 

mechanisms, the absence of formal cross-validation means that the model’s ability to 
generalize to unseen data may not have been fully 

evaluated. Additionally, the formula’s simplicity, 
though practical, may encounter limitations in 

more heterogeneous or challenging soil 

conditions, where complex interactions are not 

fully captured by an empirical formula. 

For future work, implementing k-fold cross-

validation or other validation techniques will be 

essential for rigorously testing the performance 

and robustness of the GA. Expanding the dataset 

to include more cases from different regions and 

geotechnical conditions would also enhance the 

model's applicability. Furthermore, we plan to 

explore comparative testing with computational 

models, such as finite element methods (FEM), to validate the formula’s performance in more 
complex environments. Lastly, we aim to 

investigate hybrid methods that combine genetic 

algorithms with other machine learning 

techniques, which could offer improved accuracy 

while maintaining the formula's simplicity and 

practical usability. 
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Appendix 

Appendix A1.  

 
Table 5. Summary of constant values Y1, Y2, Y3, Y4, Y5, Y6 and target value Qu according to the 40mm method. 

 

Pile 
Y1 Y2 Y3 Y4 Y5 Y6 Qu 

kN kN kN kN kN kN kN 

1 6.96 0.00 392.82 139.20 505.17 0.00 7743.62 

2 6.96 0.00 392.82 139.20 505.17 0.00 7267.83 

3 6.18 0.00 508.94 127.11 331.75 0.00 8030.19 

4 6.18 0.00 508.94 127.11 331.75 0.00 6906.47 

5 6.18 0.00 508.94 127.11 331.75 0.00 7203.66 

6 0.00 11.83 761.38 111.72 530.80 160.85 13998.55 

7 0.00 6.96 49.20 342.12 73.32 177.47 8698.68 

8 0.00 6.96 62.20 339.29 135.15 213.00 8150.59 

9 0.00 6.96 62.20 339.29 135.15 213.00 7613.09 

10 0.00 6.96 49.20 342.12 73.32 177.47 7590.00 

11 5.65 0.00 844.70 0.00 334.27 0.00 10356.12 

12 5.65 0.00 725.08 0.00 565.49 0.00 10638.89 

13 0.00 5.65 938.71 0.00 47.12 207.35 10517.43 

14 0.00 5.65 844.46 0.00 235.62 131.95 10202.95 

15 5.65 0.00 635.23 0.00 565.49 0.00 8869.55 

16 5.65 0.00 635.23 0.00 565.49 0.00 9195.62 

17 0.00 5.65 962.27 98.96 0.00 226.19 9263.47 

18 0.00 5.65 962.27 98.96 0.00 226.19 8421.83 

19 0.00 5.65 962.27 98.96 0.00 226.19 8038.90 

20 11.83 0.00 701.20 524.60 237.50 197.79 14838.09 

21 11.83 0.00 701.20 524.60 237.50 197.79 13590.86 

22 0.00 11.83 1308.16 165.88 445.98 138.48 15249.85 

23 11.83 0.00 1526.45 165.88 266.41 341.81 15003.20 

24 11.83 0.00 1526.45 165.88 266.41 341.81 15007.42 

25 0.00 11.83 1308.16 165.88 445.98 138.48 15303.19 

26 0.00 11.83 1308.16 165.88 445.98 138.48 15451.34 

27 0.00 6.96 404.70 275.55 199.33 282.74 10676.56 

28 0.00 6.96 404.70 275.55 199.33 282.74 8532.55 

29 0.00 6.96 580.57 275.55 27.80 433.54 10725.66 

30 0.00 6.96 404.70 275.55 199.33 282.74 11126.47 

31 0.00 6.96 580.57 275.55 27.80 433.54 10952.87 

32 0.00 6.96 409.15 171.91 211.49 286.51 8127.15 

33 0.00 6.96 409.15 171.91 211.49 286.51 7508.28 

34 0.00 6.96 409.15 171.91 211.49 286.51 9596.22 

35 0.00 6.96 409.15 171.91 211.49 286.51 8298.26 

36 0.00 6.96 409.15 171.91 211.49 286.51 10274.60 

37 0.00 5.65 599.42 334.93 0.00 0.00 7447.50 

38 5.65 0.00 486.96 275.55 0.00 0.00 8291.94 

39 0.00 6.96 239.88 171.91 365.00 98.02 8178.13 

40 7.62 0.00 0.00 97.64 102.04 264.70 8577.11 

41 11.83 0.00 15.08 344.53 524.27 153.31 10464.51 

42 11.83 0.00 0.00 239.26 352.61 175.18 8937.89 

43 7.62 0.00 0.00 97.64 102.04 264.70 8561.67 

44 11.83 0.00 0.00 376.72 197.04 323.71 9252.03 

45 11.83 0.00 10.05 282.20 161.85 332.96 9221.47 

46 11.83 0.00 50.27 703.57 665.85 140.74 14506.31 

47 11.83 0.00 114.10 623.71 602.05 109.33 12479.04 

48 11.83 0.00 517.94 481.21 395.21 167.13 15643.65 

49 10.79 0.00 364.17 364.98 350.98 248.31 11229.58 
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Pile 
Y1 Y2 Y3 Y4 Y5 Y6 Qu 

kN kN kN kN kN kN kN 

50 0.00 6.96 582.11 189.44 18.10 203.58 8489.10 

51 0.00 6.96 755.68 220.54 0.00 226.19 7918.28 

52 0.00 6.96 685.78 254.47 45.24 188.50 8604.25 

53 0.00 6.96 605.48 243.16 45.24 169.65 8971.23 

54 0.00 6.96 493.44 254.47 232.48 37.70 7213.33 

55 11.83 0.00 0.00 654.16 381.52 248.31 10597.50 

56 11.83 0.00 0.00 665.14 339.29 249.76 11770.90 

57 11.83 0.00 0.00 613.24 315.16 278.22 10380.33 

58 0.00 6.96 182.68 184.25 0.00 165.88 7535.00 

59 0.00 6.96 649.24 146.46 0.00 226.19 8128.73 

60 5.83 0.00 410.70 368.51 0.00 188.50 9683.37 

61 0.00 6.96 220.16 361.72 149.29 21.49 7117.66 

62 4.24 0.00 351.48 122.05 0.00 0.00 6745.42 

63 4.24 0.00 351.48 122.05 0.00 0.00 6502.58 

64 0.00 9.31 143.63 814.30 0.00 482.55 14835.75 

65 0.00 7.24 0.00 679.84 0.00 331.75 9644.61 

66 0.00 4.26 0.00 422.80 0.00 211.12 6982.86 

67 0.00 4.09 0.00 422.80 0.00 211.12 7368.23 

68 0.00 4.09 0.00 422.80 0.00 211.12 7402.75 

69 0.00 7.84 0.00 355.33 0.00 351.86 7397.61 

70 0.00 4.61 0.00 304.56 0.00 263.89 5570.70 

71 0.00 4.61 0.00 304.56 0.00 263.89 5717.07 

72 0.00 7.84 0.00 355.33 0.00 351.86 7331.17 

73 5.65 0.00 777.85 183.41 0.00 0.00 5466.95 

74 5.65 0.00 777.85 183.41 0.00 0.00 5659.98 

75 4.59 0.00 866.11 167.20 0.00 0.00 8249.88 

76 5.65 0.00 743.25 275.02 0.00 0.00 8839.41 

77 0.00 11.83 798.97 189.50 291.54 311.65 14000.49 

78 0.00 11.83 953.03 107.32 269.17 346.83 13446.41 

79 11.83 0.00 151.59 450.97 633.35 0.00 9041.33 

80 11.83 0.00 129.20 450.97 613.24 0.00 9679.02 

81 11.83 0.00 129.20 450.97 613.24 0.00 9585.64 

82 0.00 11.83 0.00 730.36 0.00 603.19 14968.30 

83 0.00 11.83 0.00 730.36 0.00 603.19 12468.41 

84 5.65 0.00 376.99 575.23 0.00 0.00 6915.70 

85 5.65 0.00 447.68 503.21 0.00 0.00 7353.29 

86 5.65 0.00 637.11 456.29 0.00 0.00 8057.55 

87 10.05 0.00 190.66 393.88 969.47 0.00 13242.14 

88 10.05 0.00 217.90 450.15 969.47 0.00 14660.26 

89 10.05 0.00 190.66 393.88 969.47 0.00 11258.32 

90 10.05 0.00 376.07 124.53 186.99 277.72 7714.56 

91 10.05 0.00 376.07 124.53 186.99 277.72 7539.17 

92 10.05 0.00 376.07 124.53 186.99 277.72 9460.89 

93 0.00 11.83 799.10 159.09 183.47 366.94 10933.02 

94 0.00 6.96 626.89 99.15 136.85 218.65 10139.13 

95 0.00 5.65 81.43 600.83 0.00 0.00 5662.78 

96 0.00 1.47 0.00 111.53 0.00 0.00 2364.78 

97 0.00 6.96 368.70 174.36 312.71 56.55 7371.36 

98 5.23 0.00 673.56 97.22 0.00 0.00 5439.15 
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Appendix A2. Regression Plot Demonstrating the Performance of Other Empirical Methods 

 
Figure 20. Comparison between the predicted values using Meyerhof (1976)’s method and measured values 

using the Chin/40 mm method. 
 

 
Figure 21. Comparison between the predicted values using Shioi & Fukui (1982)’s method and measured values 

using the Chin/40 mm method. 
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Figure 22. Comparison between the predicted values using TCVN 205:1998 and measured values using the 

Chin/40 mm method. 

 

 

 
Figure 23. Comparison between the predicted values using TCVN 10304:2014 and measured values using the 

Chin/40 mm method. 
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Figure 24. Comparison between the predicted values using Horiguchi and Karkee (1995)’s method and 

measured values using the Chin/40 mm method. 

 
Figure 25. Comparison between the predicted values using  Karkee et al. (1998) and measured values using the 

Chin/40 mm method. 
 

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

P
re

d
ic

te
d

 v
a

lu
e

s 
(k

N
)

Measured values (kN) 

R = 0.856

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

P
re

d
ic

te
d

 v
a

lu
e

s 
(k

N
)

Measured values (kN) 

R = 0.872

+20% 
+10% 

-10% 

-20% 

-30% 

+20% 
+10% 

-10% 

-20% 

-30% 

+30% 

+30% 



122 Tan Nguyen et al./Journal of Mining and Earth Sciences 65 (6), 99 - 123  

 
Figure 26. Comparison between the predicted values using JPC basic formula (Homma, 2014) and measured 

values using the Chin/40 mm method. 

 

 
Figure 27. Comparison between the predicted values using JPC hyper-MEGA (Homma, 2014) and measured 

values using the Chin/40 mm method.
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Appendix A3 

  
Figure 28. Percentage of Tip Resistance in All Case Histories Predicted by the Proposed Formula. 

0% 5% 10% 15% 20% 25% 30% 35%

KT1

KT4

23

169

TP-4

TP-11

TP-15

TP8-3

TP8-6

TP1-2

TP1-5

TP1-8

TP2-1

UTP1

WTP2

WTP7

WTP11

TP3

TP1

KT01

KT02

1

P2

PA-8

HK1

TP2

CT1

TP1

TK02

PT03

PT02

TP-D600

TPT2

Percentage of tip resistance

P
il

e
 I

D


